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ABSTRACT
While many-body localization was first shown to exist by An-
derson in 1958 for non-interacting, disordered lattice systems,
an open question remains of whether such localization persists
when electron interactions are included. If so, this would al-
low for exciting applications such as quantum memory and zero
thermal conductivity. Most recent research in this area has been
based on perturbative calculations and numerical results. This
project aimed to use a new framework to describe localization
in various quantum systems both numerically and analytically;
in particular, operator growth was studied via nested commuta-
tors modelled by graph structures. These techniques allowed for
a thorough study of the non-interacting Heisenberg model.

QUANTUM HEISENBERG MODEL
• Start from model Hamiltonian: Heisenberg model
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i = spin-1/2 operators acting on site i of one-
dimensional lattice; hi = magnetic field (disorder)

THERMALIZATION, LOCALIZATION, AND OPERATOR GROWTH

• Baker-Campbell-Hausdorff formula:
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• Goal: analyze growth and structure of nested
commutator [H,Sz

0 ]
k with order k

RESULTS: XX CASE

• Commutator growth represented by the
following graph structure (continues to
infinity):
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Figure 1: Graph for commutator growth, XX
case.

• Terms which behave the same un-
der commutation with Hamiltonian are
grouped into a single node (e.g. terms
are invariant under Sx ⇐⇒ Sy)

Terms

• Disjoint sites commute ⇒ (k + 1)2

terms survive at each order

Norm Growth
|[H,Sz

0 ]
k|1 = 8k

|[H,Sz
0 ]

k|2 = 22k
(
2k

k

)2

≈ 26k

πk

Spatial Structure

• Support on l sites = contribution
to norm of commutator from terms
spanning l sites

• 1-norm support on one site:
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• 1-norm support on l sites: initially
depends on l, but for k ≫ 1,
sl(k) ≈ s1(k) =
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k
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• 2-norm support grows as
sl(k)

2 = 2 26k

πk

• No decay of support ⇒ operator
spreading ⇒ thermalization!

Figure 2: Numerical simulation shows that
1-norm and 2-norm of commutator matches
analytical results of 8k and 22k

(
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respec-

tively. Both exhibit exponential growth
asymptotically.
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Figure 3: Numerical simulation shows that
the 2-norm support grows as 2 26k

πk
, verifying

the analytical result. Since the asymptotic be-
haviour of the support on l sites is independent
of l, the operator spreads throughout the sys-
tem as time evolves: the system thermalizes.

RESULTS: ANDERSON CASE

• New hiS
z
i term in Hamiltonian ⇒ new

terms in the commutator ⇒ new nodes
and edges on the graph
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Figure 4: Graph for commutator growth, An-
derson case.

• h = upper bound on magnetic field (dis-
order) strength

Definitions

• Cn = nth Catalan number
= 1, 1, 2, 5, 14, 42, 132. . .

Figure 5: Example Dyck paths of length
6. Cn counts the number of Dyck paths
of length 2n. Gabriella Baracchini, MIT.
(2016).

• 2F1 = hypergeometric function

2F1(a, b; c; z) =
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Spatial Structure

• Tight upper bound on
support on one site (even k):
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• Looser bound on support on l sites:
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• Ratio of support on l sites vs 1 site,

in the asymptotic case of
k ≫ l ≫ 1:
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• Exponential decay of support com-
pared to one site as l increases ⇒
localization!

• As h increases, the decay gets faster

Figure 6: Verification of analytical bound on 1-
norm via numerical simulation for the case of
h = 10.

Figure 7: Verification of analytical bound on 1-
norm via numerical simulation for the case of
h = 100.

Figure 8: Numerical simulation in the case
h = 5 shows that the support at distant sites
clearly decays at least exponentially with con-
stant k. This confirms the localization effect.

CONCLUSION AND FUTURE WORK
By analyzing operator growth both numerically and analytically using graph modelling, we have been able to find strong theoretical
evidence verifying thermalization in the non-disordered XX chain and localization in the Anderson case. Current efforts and progress
aim to similarly analyze the interacting case, adding to the body of evidence supporting thermalization in the disordered Heisenberg
model.
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