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Operator Growth

𝐴 𝜏 = 𝑒𝜏𝐻𝐴𝑒−𝜏𝐻 = 

𝑘=0

∞

𝐻, [𝐻, … , 𝐻, 𝐴 ]
𝜏𝑘

𝑘!

 ⇒ Spreading of local operator 𝐴 encoded in 𝑘-fold commutator 𝐻, 𝐴 𝑘

|| 𝐻, 𝐴 𝑘  || ≤ 2𝐽 𝑘 𝐴 𝐵𝑘 2 ∼
𝑘

ln 𝑘

𝑘

Operator growth hypothesis: ergodic systems are characterized by maximal (near-factorial) norm growth 
[Parker et al., PRX (2019)]

General 1D nearest-neighbour 
model [Avdoshkin & Dymarsky, 
PRR (2020)]

Heisenberg (Euclidean) 
time evolution:



Examples: Ising & Heisenberg
𝐻 = 

𝑗

(𝐽𝑖,𝑖+1𝜎𝑖
𝑧𝜎𝑖+1

𝑧 + ℎ𝑗
𝑧𝜎𝑗

𝑧 + ℎ𝑗
𝑥𝜎𝑗

𝑥)

|| 𝐻, 𝜎0
𝑧 𝑘 || ∼

𝑘

ln 𝑘

𝑘
 proven [Cao, JPA (2021)]

𝐻 = 

𝑗

(𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦

𝜎𝑗+1
𝑦

+ Δ𝜎𝑗
𝑧𝜎𝑗+1

𝑧 + ℎ𝑗𝜎𝑗
𝑧)

Symbolic calculations and graphical arguments 
indicate same scaling [arXiv: 2401.08031]

➢ Maximal growth ⇒ ergodic?
➢ No MBL? Or does operator growth 

hypothesis need to be modified?



Localization from an Operator 
Perspective

How can we define MBL using operator language?

1. A local operator 𝐴 remains strictly 
exponentially localized to a finite region of 
space when commuted with the Hamiltonian 

𝐻 𝑘 times 𝐻, 𝐴 𝑘 .

2. There exists a quasi-local unitary mapping 
from the microscopic Hamiltonian to an 
effective Hamiltonian written in terms of quasi-
local charges.

෩𝐻 = 𝑈𝐻𝑈† = 

𝑗

𝜖𝑗𝜏𝑗
𝑧 + 

𝑖𝑗

𝐽𝑖𝑗𝜏𝑖
𝑧𝜏𝑗

𝑧 + ⋯MBL1

MBL2 Exponentially-
decaying couplings



MBL1 Implies Exponential Total Norm Growth 
Extending combinatorial method of [Avdoshkin & Dymarsky, PRR (2020)], and incorporating:

Exponential total norm growth in 
localized model

Hard cutoff for contributions of length > 𝜉:

|| 𝐻, 𝜎0
𝑧 𝑘 || ≤ 2𝐽 𝑘||𝜎𝑧||

2𝜉𝜉𝑘

𝜉 − 1 !

Exponential decay of contributions with 
increasing length:

|| 𝐻, 𝜎0
𝑧 𝑘 | ≤ 2 |𝜎𝑧|| 2𝛼𝐽 𝑘

𝛼 = −2𝑒
1
𝜉 ln 1 − 𝑒

−
1
𝜉

Immediate contradiction with (MBL?) Ising and 
Heisenberg?
➢ Let’s examine further!

!!



Total Norm Doesn’t Give the Whole Story
Non-interacting XX and Anderson models:

𝐻 = 

𝑗

𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦

𝜎𝑗+1
𝑦

⇒ || 𝐻, 𝜎0
𝑧 𝑘 || = 8𝑘

𝐻 = 

𝑗

𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦

𝜎𝑗+1
𝑦

+ 2ℎ𝑗𝜎𝑗
𝑧

⇒ || 𝐻, 𝜎0
𝑧 𝑘 || ≤ 8𝑘 𝐷 + 1 𝑘

|ℎ𝑗| ≤ 𝐷

Both have exponential norm growth, but 
only one is localized

Look at local commutator norm 

|| 𝐻, 𝜎0
𝑧

𝑙
𝑘

|| = 𝑠𝑙 𝑘 .



Local Norm

➢  Localization characterized by exponential decay of local norm with increasing length

   Localized phase:|| 𝐻, 𝐴 𝑙
𝑘

|| ∼ 𝑒𝑘𝑒−𝑙

𝐻 = 

𝑗

𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦

𝜎𝑗+1
𝑦

⇒ 𝑠𝑙
1

𝑘 = 22𝑘+1
𝑘

𝑘 + 1 − 𝑙
2

∼
8

𝑘 𝜋
8𝑘

𝐻 = 

𝑗

𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦

𝜎𝑗+1
𝑦

+ 2ℎ𝑗𝜎𝑗
𝑧

⇒ 𝑠𝑙 𝑘 ∼ 𝑒𝑘𝐷−𝑙

Independent of 𝑙!

!! Full XXZ model lacks this decay 
with 𝑙 [arXiv:2401.08031]



MBL1 is Incompatible with Ising/Heisenberg

(graphic created by J. Sirker)



MBL2: Effective Hamiltonian
෩𝐻 = 𝑈𝐻𝑈† = 

𝑗

𝜖𝑗𝜏𝑗
𝑧 + 

𝑖𝑗

𝐽𝑖𝑗𝜏𝑖
𝑧𝜏𝑗

𝑧 + ⋯

• Since 𝑈 is unitary and quasi-local:

1. Local 𝐴 mapped 
to quasi-local ሚ𝐴

2. Invariant Frobenius norm:

|| 𝐻, 𝐴 𝑘 || = || ෩𝐻, ሚ𝐴
𝑘

||

3. 𝐴 = 𝜎0
𝑧

⇒ 𝐴2 = I
⇒ ሚ𝐴2 = I



MBL2: Operators Delocalize?
• 𝐴 can be mapped to a generic quasi-local operator:

ሚ𝐴 = 

𝑗,𝑙, 𝛼

𝑒−𝜅1|𝑗|𝑒−𝜅2𝑙𝜎𝑗
𝛼0 ⋯ 𝜎𝑗+𝑙

𝛼𝑙

|| ෩𝐻, ሚ𝐴
𝑘

|| ≤
4 2𝐽 𝑘

1 − 𝑒−𝜅1


𝑙

𝑙 + 1 𝑘𝑒− 𝜅2−ln 4 𝑙 ∼
4𝑒𝜅2

ǁ𝜅2 1 − 𝑒−𝜅1

2𝐽

ǁ𝜅2

𝑘

𝑘!

⇒ 𝑠𝑙 𝑘 ∼ 𝐽𝑙 𝑘𝑒−𝜅2𝑙

Maximum at 𝑙 =
𝑘

𝜅2
Delocalizes for large 𝑘 



MBL2 cont’d
• Local operators can be mapped to delocalizing operators while satisfying all our known restrictions

Question: Are there further (unknown) 
restrictions which lead to a stricter bound 
(possibly exponential?)

𝜎𝑧 = 1 − 

𝑙

𝑒−2𝜅 𝜎0
𝑧 + 

𝑙

𝑒−𝜅𝑙𝜎0
𝑦

⋯ 𝜎𝑙−1
𝑦

𝜎𝑙
𝑥Example:

If so, direct contradiction with 
Ising/Heisenberg due to norm invariance 

𝑈 cannot exist !!



Conclusion
Two possible conclusions for Ising/Heisenberg:

1. ෩𝐻 exists
➢ Unusual non-ergodic phase in which operators 

do not remain exponentially localized
➢ Transport survives [arXiv:2401.08031] 

⇒ hard-pressed to call this MBL

2. ෩𝐻 does not exist
➢ Supported by Schrieffer-Wolff transformation 

arguments [arXiv:2401.08031] 

෩𝐻 = 𝑈𝐻𝑈† = 

𝑗

𝜖𝑗𝜏𝑗
𝑧 + 

𝑖𝑗

𝐽𝑖𝑗𝜏𝑖
𝑧𝜏𝑗

𝑧 + ⋯


	Slide 1: Many-Body Localization from an Operator Perspective
	Slide 2: Operator Growth
	Slide 3: Examples: Ising & Heisenberg
	Slide 4: Localization from an Operator Perspective
	Slide 5: MBL1 Implies Exponential Total Norm Growth 
	Slide 6: Total Norm Doesn’t Give the Whole Story
	Slide 7: Local Norm
	Slide 8: MBL1 is Incompatible with Ising/Heisenberg
	Slide 9: MBL2: Effective Hamiltonian
	Slide 10: MBL2: Operators Delocalize?
	Slide 11: MBL2 cont’d
	Slide 12: Conclusion

